login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288714 Number of (undirected) paths on the 2n-crossed prism graph. 1
26, 444, 3654, 22888, 124850, 628860, 3014438, 13987152, 63462906, 283337380, 1249770830, 5460869112, 23680912034, 102049764684, 437447065590, 1866647382688, 7933717075274, 33602668068852, 141880252869278, 597395676419400, 2509073159290866, 10514236156062364 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Sequence extended to n=1 using recurrence. - Andrew Howroyd, Jun 19 2017
LINKS
Eric Weisstein's World of Mathematics, Crossed Prism Graph
Eric Weisstein's World of Mathematics, Graph Path
Index entries for linear recurrences with constant coefficients, signature (16, -105, 366, -732, 840, -512, 128).
FORMULA
a(n) = n*(163*4^n-9*2^(n+3)*n-87*2^(n+1)-4)/6.
From Andrew Howroyd, Jun 19 2017: (Start)
a(n) = 16*a(n-1)-105*a(n-2)+366*a(n-3)-732*a(n-4) +840*a(n-5)-512*a(n-6)+128*a(n-7) for n>7.
G.f.: 2*x*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2).
(End)
MATHEMATICA
Table[n (163 4^n - 9 2^(n + 3) n - 87 2^(n + 1) - 4)/6, {n, 20}]
LinearRecurrence[{16, -105, 366, -732, 840, -512, 128}, {26, 444, 3654, 22888, 124850, 628860, 3014438}, 20]
CoefficientList[Series[-((2 (13 + 14 x - 360 x^2 + 764 x^3 - 580 x^4 + 152 x^5))/((-1 + 2 x)^3 (1 - 5 x + 4 x^2)^2)), {x, 0, 20}], x]
PROG
(PARI)
Vec(2*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2) + O(x^20)) \\ Andrew Howroyd, Jun 19 2017
CROSSREFS
Sequence in context: A026024 A026542 A028045 * A024438 A025999 A028058
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 13 2017
EXTENSIONS
a(1) prepended and terms a(11) and beyond from Andrew Howroyd, Jun 19 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)