|
|
A288714
|
|
Number of (undirected) paths on the 2n-crossed prism graph.
|
|
1
|
|
|
26, 444, 3654, 22888, 124850, 628860, 3014438, 13987152, 63462906, 283337380, 1249770830, 5460869112, 23680912034, 102049764684, 437447065590, 1866647382688, 7933717075274, 33602668068852, 141880252869278, 597395676419400, 2509073159290866, 10514236156062364
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence extended to n=1 using recurrence. - Andrew Howroyd, Jun 19 2017
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n*(163*4^n-9*2^(n+3)*n-87*2^(n+1)-4)/6.
a(n) = 16*a(n-1)-105*a(n-2)+366*a(n-3)-732*a(n-4) +840*a(n-5)-512*a(n-6)+128*a(n-7) for n>7.
G.f.: 2*x*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2).
(End)
|
|
MATHEMATICA
|
Table[n (163 4^n - 9 2^(n + 3) n - 87 2^(n + 1) - 4)/6, {n, 20}]
LinearRecurrence[{16, -105, 366, -732, 840, -512, 128}, {26, 444, 3654, 22888, 124850, 628860, 3014438}, 20]
CoefficientList[Series[-((2 (13 + 14 x - 360 x^2 + 764 x^3 - 580 x^4 + 152 x^5))/((-1 + 2 x)^3 (1 - 5 x + 4 x^2)^2)), {x, 0, 20}], x]
|
|
PROG
|
(PARI)
Vec(2*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2) + O(x^20)) \\ Andrew Howroyd, Jun 19 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(1) prepended and terms a(11) and beyond from Andrew Howroyd, Jun 19 2017
|
|
STATUS
|
approved
|
|
|
|