login
A028045
Expansion of 1/((1-3x)(1-4x)(1-8x)(1-11x)).
1
1, 26, 443, 6304, 81573, 998502, 11807311, 136529708, 1555263545, 17536382578, 196332094179, 2187124368312, 24278204224717, 268819199510654, 2971083878320247, 32794508383067716, 361640295036833889, 3985248936321941130, 43895384100591144715
OFFSET
0,2
FORMULA
a(0)=1, a(1)=26, a(2)=443, a(3)=6304, a(n)=26*a(n-1)-233*a(n-2)+ 844*a(n-3)- 1056*a(n-4). - Harvey P. Dale, Jun 11 2012
a(n) = (5*11^(n+3)-14*8^(n+3)+30*4^(n+3)-21*3^(n+3))/840. - Yahia Kahloune, Jun 07 2013
MATHEMATICA
CoefficientList[Series[1/((1-3x)(1-4x)(1-8x)(1-11x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{26, -233, 844, -1056}, {1, 26, 443, 6304}, 30] (* Harvey P. Dale, Jun 11 2012 *)
PROG
(PARI) Vec(1/((1-3*x)*(1-4*x)*(1-8*x)*(1-11*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Sequence in context: A042304 A026024 A026542 * A288714 A024438 A025999
KEYWORD
nonn,easy
AUTHOR
STATUS
approved