Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 24 2017 00:58:41
%S 26,444,3654,22888,124850,628860,3014438,13987152,63462906,283337380,
%T 1249770830,5460869112,23680912034,102049764684,437447065590,
%U 1866647382688,7933717075274,33602668068852,141880252869278,597395676419400,2509073159290866,10514236156062364
%N Number of (undirected) paths on the 2n-crossed prism graph.
%C Sequence extended to n=1 using recurrence. - _Andrew Howroyd_, Jun 19 2017
%H Andrew Howroyd, <a href="/A288714/b288714.txt">Table of n, a(n) for n = 1..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CrossedPrismGraph.html">Crossed Prism Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphPath.html">Graph Path</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (16, -105, 366, -732, 840, -512, 128).
%F a(n) = n*(163*4^n-9*2^(n+3)*n-87*2^(n+1)-4)/6.
%F From _Andrew Howroyd_, Jun 19 2017: (Start)
%F a(n) = 16*a(n-1)-105*a(n-2)+366*a(n-3)-732*a(n-4) +840*a(n-5)-512*a(n-6)+128*a(n-7) for n>7.
%F G.f.: 2*x*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2).
%F (End)
%t Table[n (163 4^n - 9 2^(n + 3) n - 87 2^(n + 1) - 4)/6, {n, 20}]
%t LinearRecurrence[{16, -105, 366, -732, 840, -512, 128}, {26, 444, 3654, 22888, 124850, 628860, 3014438}, 20]
%t CoefficientList[Series[-((2 (13 + 14 x - 360 x^2 + 764 x^3 - 580 x^4 + 152 x^5))/((-1 + 2 x)^3 (1 - 5 x + 4 x^2)^2)), {x, 0, 20}], x]
%o (PARI)
%o Vec(2*(13+14*x-360*x^2+764*x^3-580*x^4+152*x^5)/((1-x)^2*(1-2*x)^3*(1-4*x)^2) + O(x^20)) \\ _Andrew Howroyd_, Jun 19 2017
%Y Cf. A234617, A137885.
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Jun 13 2017
%E a(1) prepended and terms a(11) and beyond from _Andrew Howroyd_, Jun 19 2017