login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288342
Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^7)).
6
1, 2, 4, 7, 12, 19, 30, 45, 66, 94, 132, 181, 246, 328, 433, 564, 728, 929, 1177, 1477, 1841, 2277, 2799, 3417, 4150, 5010, 6019, 7194, 8561, 10140, 11964, 14057, 16457, 19195, 22315, 25854, 29865, 34391, 39493, 45224, 51654, 58844, 66877, 75823, 85776, 96820
OFFSET
0,2
COMMENTS
Number of partitions of at most n into at most 7 parts.
LINKS
Richard J. Mathar, Size of the Set of Residues of Integer Powers of Fixed Exponent, research paper, 2017.
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -1, 1, -1, 0, 1, 1, 0, 1, -2, 0, 0, -2, 1, 0, 1, 1, 0, -1, 1, -1, 0, -1, 0, 2, -1).
PROG
(PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 7, (1-x^i)))) \\ Altug Alkan, Mar 28 2018
CROSSREFS
Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), this sequence (k=7), A288343 (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288254.
Sequence in context: A288341 A347542 A035298 * A347543 A343940 A288343
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 08 2017
STATUS
approved