login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288340
a(n) is the smallest prime that is the sum of both 2n-1 and 2n+1 consecutive primes.
3
23, 83, 311, 401, 1367, 3617, 863, 5683, 1523, 153113, 90011, 10949, 7901, 155671, 11131, 117977, 14699, 252079, 58369, 132749, 203293, 641867, 116257, 607093, 78791, 46471, 927049, 340601, 1485541, 521897, 99149, 771889, 2153993, 227869, 2349251, 4762213, 56099, 3232093, 944003, 1006781
OFFSET
1,1
COMMENTS
Inspired by A213174.
Records: 23, 83, 311, 401, 1367, 3617, 5683, 153113, 155671, 252079, 641867, 927049, 1485541, 2153993, 2349251, 4762213, ..., . - Robert G. Wilson v, Jun 11 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 812 terms from Robert G. Wilson v)
MATHEMATICA
pr = Prime@ Range@ 25000; f[n_] := Select[ Intersection[Plus @@@ Partition[pr, 2n -1, 1], Plus @@@ Partition[pr, 2n +1, 1]], PrimeQ][[1]]; Array[f, 40] (* or *)
f[n_] := Block[{a = Prime@ Range[2, 2n], p = Prime[2n +1], b = Prime@ Range[2, 2n +2], q = Prime[2n +3]}, While[aa = Plus @@ a; bb = Plus @@ b; aa != bb || ! PrimeQ@ aa, If[aa < bb, a = Join[Rest@ a, {p}]; p = NextPrime@ p, b = Join[Rest@ b, {q}]; q = NextPrime@ q]]; Plus @@ a]; Array[f, 40]
CROSSREFS
Cf. A213174.
Sequence in context: A167573 A318356 A142790 * A316378 A323147 A262119
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 08 2017
STATUS
approved