login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288143
Expansion of x * phi(x) * phi(x^3)^2 * f(x, x^5)^3 in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
1
1, 5, 9, 11, 24, 45, 50, 53, 81, 120, 120, 99, 170, 250, 216, 203, 288, 405, 362, 264, 450, 600, 528, 477, 601, 850, 729, 550, 840, 1080, 962, 821, 1080, 1440, 1200, 891, 1370, 1810, 1530, 1272, 1680, 2250, 1850, 1320, 1944, 2640, 2208, 1827, 2451, 3005, 2592
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (a(q^2) - a(-q)) * (2*a(q) + a(-q))^2 / 54 in powers of q where a() is a cubic AGM theta function.
Expansion of -c(-q) * (2*c(q) + c(-q))^2 / 27 in powers of q where c() is a cubic AGM theta function.
Expansion of eta(q^2)^11 * eta(q^6)^7 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^12)) in powers of q.
a(n) is multiplicative with a(3^e) = 9^e, a(2^e) = (4^(e+1) + 9*(-1)^(e+1)) / 5 if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6).
Euler transform of period 12 sequence [5, -6, 6, -1, 5, -12, 5, -1, 6, -6, 5, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113261.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * if(mod(k,4)=2, 3/2, 1).
a(n) = -(-1)^n * A214262(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime == 1 (mod 6)} (p^3/(p^3-1)) * Product_{p prime == 5 (mod 6)} (p^3/(p^3+1)) = 1/(A334478 * A334479) = 0.99452678821883983883... . - Amiram Eldar, Feb 20 2024
EXAMPLE
G.f. = q + 5*q^2 + 9*q^3 + 11*q^4 + 24*q^5 + 45*q^6 + 50*q^7 + 53*q^8 + 81*q^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, (-1)^n DivisorSum[ n, (-1)^# #^2 JacobiSymbol[ -3, n/#] &]];
a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^3]^2 (QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6])^3, {x, 0, n}];
a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[# == 3, 9^#2, # == 2, (4^(#2 + 1) + 9 (-1)^(#2 + 1))/5, Mod[#, 6] == 1, ((#^2)^(#2 + 1) - 1)/(#^2 - 1), True, ((#^2)^(#2 + 1) - (-1)^(#2 + 1))/(#^2 + 1)] & @@@ FactorInteger@n)];
PROG
(PARI) {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d * d^2 * kronecker( -3, n/d)))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^11 * eta(x^6 + A)^7 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^12 + A)), n))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 9^e, p==2, (4^(e+1) + 9*(-1)^(e+1)) / 5, p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1))))};
(Magma) A := Basis( ModularForms( Gamma1(12), 3), 52); A[2] + 5*A[3] + 9*A[4] + 11*A[5] + 24*A[6] + 45*A[7] + 50*A[8] + 53*A[9] + 81*A[10] + 120*A[11] + 120*A[12] + 99*A[13];
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Jul 01 2017
STATUS
approved