login
A288081
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 3.
10
20465052608, 2079913241120, 104395235785256, 3505018618003600, 89390908732820144, 1857975645023518752, 32904419378927915376, 511895831411154922176, 7151648337964982801760, 91230456810047671200128, 1076401288635137599528944, 11867194568934207062990560
OFFSET
12,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 3];
Table[a[n], {n, 12, 27}] (* Jean-François Alcover, Oct 17 2018 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288081_ser(N) = {
my(y = A000108_ser(N+1));
-8*y*(y-1)^12*(14699198844*y^11 + 323418619692*y^10 + 1093150970776*y^9 - 2010290018547*y^8 - 3822380209098*y^7 + 7160304314725*y^6 - 371305853280*y^5 - 4606441266688*y^4 + 2480182576832*y^3 - 129107145168*y^2 - 150618243904*y + 20945187392)/(y-2)^35;
};
Vec(A288081_ser(12))
CROSSREFS
Rooted maps of genus 3 with n edges and f faces for 1<=f<=10: A288075 f=1, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, this sequence, A288262 f=8, A288263 f=9, A288264 f=10.
Column 7 of A269923.
Cf. A000108.
Sequence in context: A118466 A003810 A003803 * A172794 A068243 A034656
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 07 2017
STATUS
approved