login
A003810
Order of simple Chevalley group A_5(q), q = prime power.
0
20158709760, 21032402889738240, 361310134959341568000, 1383059427750000000000000, 61637759336805268655956377600, 39841906041871272087686291128320, 1234219157861100568481165377536000, 1392357762553459444742198951136000000, 161092184393918097496815608751014338560
OFFSET
1,1
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
FORMULA
a(n) = a(A000961(n+1),5) where a(q,n) is defined in A003793. - Sean A. Irvine, Sep 18 2015
MATHEMATICA
f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[#, 5] & /@ Select[Range[2, 13], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)
CROSSREFS
Sequence in context: A234397 A234194 A118466 * A003803 A288081 A172794
KEYWORD
nonn,easy
EXTENSIONS
a(8)-a(9) from Michael De Vlieger, Sep 18 2015
STATUS
approved