OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..600
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
Index entries for linear recurrences with constant coefficients, signature (56,-784,3136).
FORMULA
a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 56*x^2 + 784* x - 3136, x1 = 7*(csc(2*Pi/7))^2, x2 = 7*(csc(4*Pi/7))^2, x3 = 7*(csc(8*Pi/7))^2.
a(n) = 56*a(n-1) - 784*a(n-2) + 3136*a(n-3) for n>2, a(0) = 3, a(1) = 56, a(2) = 1568.
G.f.: (3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3). - Colin Barker, May 25 2017
MATHEMATICA
LinearRecurrence[{56, -784, 3136}, {3, 56, 1568}, 30] (* Harvey P. Dale, Aug 08 2017 *)
PROG
(PARI) Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
(PARI) polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, May 24 2017
STATUS
approved