This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287393 Domination number for knight's graph on a 2 X n board. 3
 0, 2, 4, 4, 4, 4, 4, 6, 8, 8, 8, 8, 8, 10, 12, 12, 12, 12, 12, 14, 16, 16, 16, 16, 16, 18, 20, 20, 20, 20, 20, 22, 24, 24, 24, 24, 24, 26, 28, 28, 28, 28, 28, 30, 32, 32, 32, 32, 32, 34, 36, 36, 36, 36, 36, 38, 40, 40, 40, 40, 40, 42, 44, 44, 44, 44, 44, 46 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Minimum number of knights required to dominate a 2 X n board. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Wikipedia, Knight_(chess) Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1). FORMULA a(n) = 2*(floor((n+4)/6) + floor((n+5)/6)). From Colin Barker, May 26 2017: (Start) G.f.: 2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)). a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>5. (End) a(n) = 2*A099480(n-1). EXAMPLE For n=3 we need a(3)=4 knights to dominate a 2 X 3 board. MATHEMATICA Table[2*(Floor[(i+4)/6]+Floor[(i+5)/6]), {i, 0, 67}] PROG (Python) [2*(int((i+4)/6)+int((i+5)/6)) for i in range(68)] (PARI) concat(0, Vec(2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ Colin Barker, May 27 2017 CROSSREFS Cf. A099480, A287394. Sequence in context: A049111 A096509 A035661 * A260085 A159461 A046930 Adjacent sequences:  A287390 A287391 A287392 * A287394 A287395 A287396 KEYWORD nonn,easy AUTHOR David Nacin, May 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 09:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)