login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287393 Domination number for knight's graph on a 2 X n board. 3
0, 2, 4, 4, 4, 4, 4, 6, 8, 8, 8, 8, 8, 10, 12, 12, 12, 12, 12, 14, 16, 16, 16, 16, 16, 18, 20, 20, 20, 20, 20, 22, 24, 24, 24, 24, 24, 26, 28, 28, 28, 28, 28, 30, 32, 32, 32, 32, 32, 34, 36, 36, 36, 36, 36, 38, 40, 40, 40, 40, 40, 42, 44, 44, 44, 44, 44, 46 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Minimum number of knights required to dominate a 2 X n board.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Wikipedia, Knight_(chess)

Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).

FORMULA

a(n) = 2*(floor((n+4)/6) + floor((n+5)/6)).

From Colin Barker, May 26 2017: (Start)

G.f.: 2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).

a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>5.

(End)

a(n) = 2*A099480(n-1).

EXAMPLE

For n=3 we need a(3)=4 knights to dominate a 2 X 3 board.

MATHEMATICA

Table[2*(Floor[(i+4)/6]+Floor[(i+5)/6]), {i, 0, 67}]

PROG

(Python) [2*(int((i+4)/6)+int((i+5)/6)) for i in range(68)]

(PARI) concat(0, Vec(2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ Colin Barker, May 27 2017

CROSSREFS

Cf. A099480, A287394.

Sequence in context: A049111 A096509 A035661 * A260085 A159461 A046930

Adjacent sequences:  A287390 A287391 A287392 * A287394 A287395 A287396

KEYWORD

nonn,easy

AUTHOR

David Nacin, May 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 09:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)