login
A287392
Domination number for lion's graph on an n X n board.
1
0, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 144, 144, 144, 144, 144, 169, 169, 169
OFFSET
0,7
COMMENTS
Minimum number of lions (from Chu shogi, Dai shogi and other Shogi variants) required to dominate an n X n board.
FORMULA
a(n) = floor((n+4)/5)^2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/6. - Amiram Eldar, Aug 15 2022
EXAMPLE
For n=6 we need a(6)=4 lions to dominate a 6 X 6 board.
MATHEMATICA
Table[Floor[(i+4)/5]^2, {i, 0, 64}]
PROG
(Python) [int((n+4)/5)**2 for n in range(64)]
CROSSREFS
Cf. A075458.
Sequence in context: A162281 A262690 A048760 * A035627 A228423 A165923
KEYWORD
nonn,easy
AUTHOR
David Nacin, May 24 2017
STATUS
approved