login
A228423
Sum of the squared primes less than or equal to n.
0
0, 0, 0, 4, 4, 4, 4, 4, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87
OFFSET
1,4
FORMULA
a(n) = Sum_{ i <= n | Omega(i) = 2} i * (1 - mu(i)).
a(n) = A081738(A000196(n)). - Michel Marcus, Aug 20 2023
EXAMPLE
a(10) = 13; 4 and 9 are the only squared primes less than or equal to 10 and their sum is 13.
MAPLE
with(numtheory); a:=n->add('if'(bigomega(i)=2, i*(1-mobius(i)), 0), i=1..n); seq(a(n), n=1..100);
MATHEMATICA
With[{sp=Prime[Range[10]]^2}, Table[Total[Select[sp, #<=n&]], {n, 100}]] (* Harvey P. Dale, Nov 11 2016 *)
CROSSREFS
Cf. A024450.
Sequence in context: A048760 A287392 A035627 * A165923 A228729 A174444
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Nov 09 2013
STATUS
approved