login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287029
Row sums of A286800.
4
1, 3, 13, 147, 1965, 30979, 559357, 11289219, 250794109, 6066778627, 158533572861, 4447703062787, 133309656009469, 4251322261512195, 143749952968507389, 5137921526511802371, 193589838004887201789, 7670544451820808601603, 318892867844484240154621, 13881730766388536085356547
OFFSET
1,2
LINKS
Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
FORMULA
a(n) = Sum_{k=0..floor((2*n-1)/3)} A286800(n,k) for n>=1.
a(n) ~ 4*exp(-7/2)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 15/(8*n) - 503/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 21 2017
EXAMPLE
A(x) = x + 3*x^2 + 13*x^3 + 147*x^4 + 1965*x^5 + 30979*x^6 + ...
MATHEMATICA
terms = 20; y[_, _] = 0; Do[y[x_, t_] = (1/(-1 + y[x, t])) x (-1 - y[x, t]^2 - 2 y[x, t] (-1 + D[y[x, t], x]) + t x (-1 + y[x, t]) (2 (-1 + y[x, t])^2 + (x (-1 + y[x, t]) + y[x, t]) D[y[x, t], x])) + O[x]^n // Normal // Simplify, {n, terms+1}];
Total[CoefficientList[#, t]]& /@ CoefficientList[y[x, t], x] // Rest
PROG
(PARI)
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1; ); y0;
};
A286798_ser(N, t='t) = {
my(v = A286795_ser(N, t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
A286800_ser(N, t='t) = {
my(v = A286798_ser(N, t)); 1-1/subst(v, 'x, serreverse(x*v^2));
};
A287029_ser(N) = A286800_ser(N+1, 1);
Vec(A287029_ser(20))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, May 22 2017
STATUS
approved