OFFSET
0,35
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, A Remarkable eta-product Identity
FORMULA
G.f.: x^4 * Prod_{k>0} (1 - x^(2 * k)) * (1 - x^(15 * k)) * (1 - x^(21 * k)) * (1 - x^(70 * k)).
MAPLE
seq(coeff(series(x^4*mul((1-x^(2*k))*(1-x^(15*k))*(1-x^(21*k))*(1-x^(70*k)), k=1..n), x, n+1), x, n), n=0..150); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/2)* eta[q^2]*eta[q^15]*eta[q^21]*eta[q^70], {q, 0, 50}], q] (* G. C. Greubel, Jul 28 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q^2)*eta(q^15)*eta(q^21)*eta(q^70); concat([0, 0, 0, 0], Vec(A)) \\ G. C. Greubel, Jul 28 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 03 2017
STATUS
approved