login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286133
Expansion of q^(-1/2) * eta(q^2) * eta(q^15) * eta(q^21) * eta(q^70) in powers of q.
2
0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 0, -1, -2, -1, 1, 0, 1, -1, 1, 0, -1, 1, -2, 0, -1, 0, 1, 2, 2, 0, 0, 0, 1, 2, 0, -1, 1, -1, -1, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 3, -1, -1, 0, -1
OFFSET
0,35
FORMULA
G.f.: x^4 * Prod_{k>0} (1 - x^(2 * k)) * (1 - x^(15 * k)) * (1 - x^(21 * k)) * (1 - x^(70 * k)).
MAPLE
seq(coeff(series(x^4*mul((1-x^(2*k))*(1-x^(15*k))*(1-x^(21*k))*(1-x^(70*k)), k=1..n), x, n+1), x, n), n=0..150); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/2)* eta[q^2]*eta[q^15]*eta[q^21]*eta[q^70], {q, 0, 50}], q] (* G. C. Greubel, Jul 28 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q^2)*eta(q^15)*eta(q^21)*eta(q^70); concat([0, 0, 0, 0], Vec(A)) \\ G. C. Greubel, Jul 28 2018
CROSSREFS
Cf. A286135.
Sequence in context: A287325 A336387 A358217 * A328248 A360158 A329885
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 03 2017
STATUS
approved