login
A286130
Number x = concat(MSD(x),b) such that MSD(x)*b = phi(x), where MSD(x) is the Most Significant Digit of x and phi(x) is the Euler totient function of x.
1
24, 26, 87, 250, 440, 448, 644, 875, 1320, 1640, 1768, 1996, 2480, 2500, 2656, 4400, 6544, 8250, 8360, 8420, 8727, 8875, 13200, 16400, 19984, 19996, 24800, 25000, 25424, 43750, 44000, 45712, 63528, 73840, 75184, 82500, 83346, 83478, 83600, 84200, 132000, 164000
OFFSET
1,1
COMMENTS
Numbers of the form 25*10^k, 44*10^k, 132*10^k, 164*10^k, 248*10^k, 825*10^k, 836*10^k, 842*10^k, 4375*10^k, 7384*10^k, etc. , with k > 0, are part of the sequence.
LINKS
EXAMPLE
phi(63528) = 6*3528 = 21168.
MAPLE
with(numtheory): P:=proc(q) local n; for n from 1 to q do
if phi(n)=trunc(n/10^(ilog10(n)))*(n mod 10^ilog10(n)) then print(n); fi;
od; end: P(10^9);
MATHEMATICA
Select[Range@ 164000, Function[x, First[#] FromDigits[Rest@ #] == EulerPhi@ x &@ IntegerDigits@ x]] (* Michael De Vlieger, May 03 2017 *)
CROSSREFS
Sequence in context: A053968 A336237 A058627 * A279427 A116203 A345499
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 03 2017
STATUS
approved