login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286128
Expansion of eta(q) * eta(q^12) * eta(q^15) * eta(q^20) in powers of q.
2
0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -2, 1, 1, -2, 1, 0, 0, -1, -2, 1, 1, 0, 0, 0, 2, 2, -1, -2, 0, 0, 4, -1, -1, 0, 0, -2, -1, 2, -2, -1, 2, -1, 0, -1, -2, -2, 1, 4, 0, 0, 0, 0, -2, 4, -4, 2, 1, 2, 4, 3, -3, 0, 2, 1, -4, -5, 2, -2, 0, 0, -4, -1, 0, 0, 2, 0
OFFSET
0,15
COMMENTS
Early in 2005 Michael Somos discovered a remarkable eta-product identity: eta(q^2) * eta(q^6) * eta(q^10) * eta(q^30) = eta(q) * eta(q^12) * eta(q^15) * eta(q^20) + eta(q^3) * eta(q^4) * eta(q^5) * eta(q^60).
G.f. is a period 1 Fourier series that satisfies f(-1 / (60 t)) = 60 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A286129. - Michael Somos, Oct 31 2019
FORMULA
G.f.: x^2 * Prod_{k>0} (1 - x^k) * (1 - x^(12 * k)) * (1 - x^(15 * k)) * (1 - x^(20 * k)).
EXAMPLE
G.f. = x^2 - x^3 - x^4 + x^7 + x^9 - 2*x^14 + x^15 + x^16 - 2*x^17 + x^18 + ... - Michael Somos, Oct 31 2019
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[eta[q]* eta[q^12]*eta[q^15]*eta[q^20], {q, 0, 50}], q] (* G. C. Greubel, Jul 29 2018 *)
PROG
(PARI) my(q='q+O('q^50), A = eta(q)*eta(q^12)*eta(q^15)*eta(q^20)); concat([0, 0], Vec(A)) \\ G. C. Greubel, Jul 29 2018
(PARI) {a(n) = my(A); n -= 2; if ( n < 0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A) * eta(x^15 + A) * eta(x^20 + A), n))}; /* Michael Somos, Oct 31 2019 */
CROSSREFS
Cf. A030184 (eta(q) * eta(q^3) * eta(q^5) * eta(q^15)), A286129.
Sequence in context: A176811 A057594 A259029 * A197547 A239723 A229541
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 03 2017
STATUS
approved