Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 12 2021 22:24:48
%S 0,0,0,0,1,0,-1,0,-1,0,0,0,0,0,1,0,0,0,1,-1,0,1,0,1,0,-1,0,1,-1,0,0,0,
%T 0,-1,-2,-1,1,0,1,-1,1,0,-1,1,-2,0,-1,0,1,2,2,0,0,0,1,2,0,-1,1,-1,-1,
%U 1,0,-2,0,0,0,0,0,0,0,0,0,0,-2,1,3,-1,-1,0,-1
%N Expansion of q^(-1/2) * eta(q^2) * eta(q^15) * eta(q^21) * eta(q^70) in powers of q.
%H Seiichi Manyama, <a href="/A286133/b286133.txt">Table of n, a(n) for n = 0..10000</a>
%H Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/retaprod.html">A Remarkable eta-product Identity</a>
%F G.f.: x^4 * Prod_{k>0} (1 - x^(2 * k)) * (1 - x^(15 * k)) * (1 - x^(21 * k)) * (1 - x^(70 * k)).
%p seq(coeff(series(x^4*mul((1-x^(2*k))*(1-x^(15*k))*(1-x^(21*k))*(1-x^(70*k)),k=1..n), x,n+1),x,n),n=0..150); # _Muniru A Asiru_, Jul 29 2018
%t eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/2)* eta[q^2]*eta[q^15]*eta[q^21]*eta[q^70], {q, 0, 50}], q] (* _G. C. Greubel_, Jul 28 2018 *)
%o (PARI) q='q+O('q^50); A = eta(q^2)*eta(q^15)*eta(q^21)*eta(q^70); concat([0,0,0,0], Vec(A)) \\ _G. C. Greubel_, Jul 28 2018
%Y Cf. A286135.
%K sign
%O 0,35
%A _Seiichi Manyama_, May 03 2017