login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A285903
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).
3
1, 0, 1, 2, 4, 7, 14, 23, 43, 73, 134, 223, 405, 689, 1216, 2094, 3678, 6333, 11080, 19152, 33363, 57798, 100549, 174262, 302898, 525328, 912448, 1583069, 2748892, 4769842, 8281087, 14371045, 24946819, 43295806, 75153267, 130434130, 226401111, 392944875, 682038592, 1183770424, 2054659668, 3566162246
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (Sum_{n>=0} (-1)^n*x^(n*(n+1)) /Product_{k=1..n} (1 - x^k)) / (Sum_{n>=0} (-1)^n*x^(n^2)/Product_{k=1..n} (1 - x^k)).
Sum_{d|n} a(d) = A005169(n) for n > 0.
From Vaclav Kotesovec, Apr 30 2017: (Start)
a(n) ~ c * d^n, where
d = 1/A347901 = 1.735662824530347425658260749719668530254652847290392754609934...
c = 0.31236332459674145306627970724066492149823012868471473538681348971946...
(End)
EXAMPLE
G.f.: 1 + x/(1 - x) + x^3/(1 - x^3) + 2*x^4/(1 - x^4) + 4*x^5/(1 - x^5) + ... = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).
MATHEMATICA
nn = 42; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-x^n, 1, {n, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
CROSSREFS
Sequence in context: A054160 A034426 A000075 * A048248 A370636 A056180
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 28 2017
STATUS
approved