login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285903
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).
3
1, 0, 1, 2, 4, 7, 14, 23, 43, 73, 134, 223, 405, 689, 1216, 2094, 3678, 6333, 11080, 19152, 33363, 57798, 100549, 174262, 302898, 525328, 912448, 1583069, 2748892, 4769842, 8281087, 14371045, 24946819, 43295806, 75153267, 130434130, 226401111, 392944875, 682038592, 1183770424, 2054659668, 3566162246
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (Sum_{n>=0} (-1)^n*x^(n*(n+1)) /Product_{k=1..n} (1 - x^k)) / (Sum_{n>=0} (-1)^n*x^(n^2)/Product_{k=1..n} (1 - x^k)).
Sum_{d|n} a(d) = A005169(n) for n > 0.
From Vaclav Kotesovec, Apr 30 2017: (Start)
a(n) ~ c * d^n, where
d = 1/A347901 = 1.735662824530347425658260749719668530254652847290392754609934...
c = 0.31236332459674145306627970724066492149823012868471473538681348971946...
(End)
EXAMPLE
G.f.: 1 + x/(1 - x) + x^3/(1 - x^3) + 2*x^4/(1 - x^4) + 4*x^5/(1 - x^5) + ... = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).
MATHEMATICA
nn = 42; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-x^n, 1, {n, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
CROSSREFS
Sequence in context: A054160 A034426 A000075 * A048248 A370636 A056180
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 28 2017
STATUS
approved