login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056180
Sum of a(n) terms of 1/k^(4/5) first exceeds n.
0
1, 2, 4, 7, 14, 24, 40, 63, 95, 140, 201, 281, 384, 516, 682, 888, 1141, 1449, 1820, 2263, 2789, 3408, 4133, 4976, 5951, 7074, 8360, 9826, 11492, 13376, 15499, 17884, 20554, 23533, 26849, 30528, 34600, 39095, 44045, 49485, 55450, 61976, 69103
OFFSET
0,2
MATHEMATICA
s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(4/5), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 50} ]
Join[{1}, Table[Position[Accumulate[Table[N[1/k^(4/5)], {k, 100000}]], _?(#>n&), {1}, 1], {n, 50}]//Flatten] (* Harvey P. Dale, Sep 23 2016 *)
CROSSREFS
Cf. A019529 and A002387.
Sequence in context: A285903 A048248 A370636 * A000076 A217730 A360055
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 01 2000
STATUS
approved