login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285768
Moebius transform of repunits (A002275).
0
1, 10, 110, 1100, 11110, 110990, 1111110, 11110000, 111111000, 1111099990, 11111111110, 111110998900, 1111111111110, 11111109999990, 111111111099890, 1111111100000000, 11111111111111110, 111111110999889000, 1111111111111111110, 11111111109999998900, 111111111111109999890
OFFSET
1,2
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Repunit
FORMULA
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/((1 - x)*(1 - 10*x)).
Dirichlet g.f.: (PolyLog(s,10) - zeta(s))/(9*zeta(s)), where PolyLog() is the polylogarithm function.
a(n) = Sum_{d|n} mu(n/d)*(10^d - 1)/9, where mu() is the Moebius function (A008683).
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d] (10^d - 1)/9, {d, Divisors[n]}]; Array[a, 21]
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*(10^d-1)/9); \\ Michel Marcus, Nov 05 2018
CROSSREFS
Sequence in context: A290672 A290417 A289405 * A242162 A144099 A102092
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 25 2017
STATUS
approved