login
A285767
Cyclops octagonal numbers: a(n) = n*(3*n-2) with one "zero" digit in the middle.
0
0, 408, 11041, 18096, 22016, 23056, 28033, 38081, 56033, 61061, 1140833, 1170625, 1250656, 1410416, 1460216, 1540833, 2120161, 2130261, 2140385, 2150533, 2310896, 2390561, 2460696, 2520833, 2570576, 2780181, 2920533, 3230256, 3280256, 3490565, 3660865, 3680776
OFFSET
1,2
COMMENTS
The n-th octagonal number x(n) = n*(3*n - 2).
Subset of A000567.
All the terms have the number of digits odd with only one "zero" digit in the middle.
EXAMPLE
For n = 12; x(12) = 12*(3*12 - 2) = 408 that is 12th octagonal number with one zero digit in the middle, hence appears in the sequence.
For n = 61; x(61) = 61*(3*61 - 2) = 11041 that is 61st octagonal number with one zero digit in the middle, hence appears in the sequence.
MAPLE
iscyclops:= proc(n) local L, t;
t:= ilog10(n);
if t::odd then return false fi;
L:= convert(n, base, 10);
L[1+t/2] = 0 and numboccur(0, L) = 1
end proc:
iscyclops(0):= true:
select(iscyclops, [seq(n*(3*n-2), n=0..1000)]);
MATHEMATICA
Select[Table[n (3 n - 2), {n, 0, 1110}], And[OddQ@ Length@ #, Count[#, 0] == 1, Take[#, {Ceiling[Length[#]/2]}] == {0}] &@ IntegerDigits@ # &] (* Michael De Vlieger, Apr 26 2017 *)
CROSSREFS
Intersection of A000567 and A134808.
Sequence in context: A234697 A337795 A183717 * A282479 A163024 A283948
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Apr 25 2017
STATUS
approved