OFFSET
1,2
COMMENTS
The n-th octagonal number x(n) = n*(3*n - 2).
Subset of A000567.
All the terms have the number of digits odd with only one "zero" digit in the middle.
EXAMPLE
For n = 12; x(12) = 12*(3*12 - 2) = 408 that is 12th octagonal number with one zero digit in the middle, hence appears in the sequence.
For n = 61; x(61) = 61*(3*61 - 2) = 11041 that is 61st octagonal number with one zero digit in the middle, hence appears in the sequence.
MAPLE
iscyclops:= proc(n) local L, t;
t:= ilog10(n);
if t::odd then return false fi;
L:= convert(n, base, 10);
L[1+t/2] = 0 and numboccur(0, L) = 1
end proc:
iscyclops(0):= true:
select(iscyclops, [seq(n*(3*n-2), n=0..1000)]);
MATHEMATICA
Select[Table[n (3 n - 2), {n, 0, 1110}], And[OddQ@ Length@ #, Count[#, 0] == 1, Take[#, {Ceiling[Length[#]/2]}] == {0}] &@ IntegerDigits@ # &] (* Michael De Vlieger, Apr 26 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Apr 25 2017
STATUS
approved