login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160717
Cyclops triangular numbers.
9
0, 105, 406, 703, 903, 11026, 13041, 14028, 15051, 27028, 36046, 41041, 43071, 46056, 61075, 66066, 75078, 77028, 83028, 85078, 93096, 1110795, 1130256, 1160526, 1180416, 1250571, 1290421, 1330896, 1350546, 1360425, 1380291
OFFSET
1,2
COMMENTS
Triangular numbers (A000217) that are also cyclops numbers (A134808).
EXAMPLE
105 is in the sequence since it is both a triangular number (105 = 1 + 2 + ... + 14) and a Cyclops number (number of digits is odd, and the only zero is the middle digit). - Michael B. Porter, Jul 08 2016
MAPLE
count:= 1: A[1]:= 0:
for d from 1 to 3 do
for x from 0 to 9^d-1 do
L:= convert(x+9^d, base, 9);
X:= add((L[i]+1)*10^(i-1), i=1..d);
for y from 0 to 9^d-1 do
L:= convert(y+9^d, base, 9);
Y:= add((L[i]+1)*10^(i-1), i=1..d);
Z:= Y + 10^(d+1)*X;
if issqr(1+8*Z) then
count:= count+1;
A[count]:= Z;
fi
od od od:
seq(A[i], i=1..count); # Robert Israel, Jul 08 2016
MATHEMATICA
cyclopsQ[n_] := Block[{id=IntegerDigits@n, lg=Floor[Log[10, n]+1]}, Count[id, 0]==1 && OddQ@lg && id[[(lg+1)/2]]==0]; lst = {0}; Do[t = n (n + 1)/2; If[ cyclopsQ@t, AppendTo[lst, t]], {n, 0, 1670}]; lst (* Robert G. Wilson v, Jun 09 2009 *)
cyclpsQ[n_]:=With[{len=IntegerLength[n]}, OddQ[len]&&DigitCount[n, 10, 0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0}, Select[ Accumulate[ Range[2000]], cyclpsQ]] (* Harvey P. Dale, Nov 05 2024 *)
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Jun 08 2009
EXTENSIONS
More terms from Robert G. Wilson v, Jun 09 2009
Offset and b-file changed by N. J. A. Sloane, Jul 27 2016
STATUS
approved