Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 05 2024 18:05:11
%S 0,105,406,703,903,11026,13041,14028,15051,27028,36046,41041,43071,
%T 46056,61075,66066,75078,77028,83028,85078,93096,1110795,1130256,
%U 1160526,1180416,1250571,1290421,1330896,1350546,1360425,1380291
%N Cyclops triangular numbers.
%C Triangular numbers (A000217) that are also cyclops numbers (A134808).
%H Kenny Lau, <a href="/A160717/b160717.txt">Table of n, a(n) for n = 1..20001</a>
%e 105 is in the sequence since it is both a triangular number (105 = 1 + 2 + ... + 14) and a Cyclops number (number of digits is odd, and the only zero is the middle digit). - _Michael B. Porter_, Jul 08 2016
%p count:= 1: A[1]:= 0:
%p for d from 1 to 3 do
%p for x from 0 to 9^d-1 do
%p L:= convert(x+9^d,base,9);
%p X:= add((L[i]+1)*10^(i-1),i=1..d);
%p for y from 0 to 9^d-1 do
%p L:= convert(y+9^d,base,9);
%p Y:= add((L[i]+1)*10^(i-1),i=1..d);
%p Z:= Y + 10^(d+1)*X;
%p if issqr(1+8*Z) then
%p count:= count+1;
%p A[count]:= Z;
%p fi
%p od od od:
%p seq(A[i],i=1..count); # _Robert Israel_, Jul 08 2016
%t cyclopsQ[n_] := Block[{id=IntegerDigits@n,lg=Floor[Log[10,n]+1]}, Count[id,0]==1 && OddQ@lg && id[[(lg+1)/2]]==0]; lst = {0}; Do[t = n (n + 1)/2; If[ cyclopsQ@t, AppendTo[lst, t]], {n, 0, 1670}]; lst (* _Robert G. Wilson v_, Jun 09 2009 *)
%t cyclpsQ[n_]:=With[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[ Accumulate[ Range[2000]],cyclpsQ]] (* _Harvey P. Dale_, Nov 05 2024 *)
%Y Cf. A000217, A134808, A134809, A138131, A138148, A153806, A160711, A160712.
%K base,easy,nonn
%O 1,2
%A _Omar E. Pol_, Jun 08 2009
%E More terms from _Robert G. Wilson v_, Jun 09 2009
%E Offset and b-file changed by _N. J. A. Sloane_, Jul 27 2016