OFFSET
1,2
COMMENTS
a(n) is the solution to the recurrence relation a(n) = a(n-4-a(n-1)) + a(n-4-a(n-4)), with the initial conditions: a(1) = 1, a(2) = 2, a(3) = a(4) = a(5) = 3, a(6) = a(7) = a(8) = 4, a(9) = a(10) = 5.
The sequence a(n) is monotonic, with successive terms increasing by 0 or 1. So the sequence hits every positive integer.
LINKS
Nathan Fox, Table of n, a(n) for n = 1..10000
A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505
MAPLE
A285761:=proc(n) option remember: if n <= 0 then 0: elif n = 1 then 1: elif n = 2 then 2: elif n = 3 then 3: elif n = 4 then 3: elif n = 5 then 3: elif n = 6 then 4: elif n = 7 then 4: elif n = 8 then 4: elif n = 9 then 5: elif n = 10 then 5: else A285761(n-4-A285761(n-1)) + A285761(n-4-A285761(n-4)): fi: end:
CROSSREFS
KEYWORD
nonn
AUTHOR
Nathan Fox, Apr 25 2017
STATUS
approved