The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285489 Sum of entries in the second cycles of all permutations of [n]. 2
2, 12, 76, 545, 4422, 40194, 405072, 4484808, 54121680, 707105520, 9944043840, 149769846720, 2405254884480, 41029304803200, 740857462732800, 14117363667993600, 283111532808652800, 5960312380873267200, 131434781395405824000, 3029635129259289600000 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
Wikipedia, Permutation
FORMULA
Recursion: see Maple program.
E.g.f.: x*(x*(x-2)+2*(x-1)^2*log(1-x))/(4*(x-1)^3).
a(n) ~ n! * n^2 / 8. - Vaclav Kotesovec, Apr 20 2017
EXAMPLE
a(3) = 12 because the sum of the entries in the second cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 0+0+3+2+5+2 = 12.
MAPLE
a:= proc(n) option remember; `if`(n<3, (n-1)*n,
((2*n^3-7*n^2+11*n-8)*n*a(n-1)-(n-1)*(n-2)
*(n^2-n+2)*n*a(n-2))/((n^2-3*n+4)*(n-1)))
end:
seq(a(n), n=2..25);
MATHEMATICA
a[2] = 2; a[3] = 12; a[n_] := a[n] = ((2n^3 - 7n^2 + 11n - 8) n a[n-1] - (n-1)(n-2)(n^2 - n + 2) n a[n-2])/((n^2 - 3n + 4)(n-1));
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
CROSSREFS
Column k=2 of A285439.
Sequence in context: A037725 A037620 A198474 * A121680 A277478 A372410
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 19 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 08:30 EDT 2024. Contains 372814 sequences. (Running on oeis4.)