The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285097 a(n) = difference between the positions of two least significant 1-bits in base-2 representation of n, or 0 if there are less than two 1-bits in n (when n is either zero or a power of 2). 2
 0, 0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 1, 1, 2, 1, 1, 0, 4, 3, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 5, 4, 1, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 6, 5, 1, 4, 2, 1, 1, 3, 3, 2, 1, 1, 2, 1, 1, 2, 4, 3, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 4, 1, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Antti Karttunen, Table of n, a(n) for n = 0..8192 Index entries for sequences related to binary expansion of n FORMULA If A000120(n) < 2, a(n) = 0, otherwise a(n) = A285099(n) - A007814(n) = A007814(A129760(n)) - A007814(n). a(n) = 0 if n is 0 or of the form 2^k, (k>=0), otherwise a(n) = v_2(A000265(n)-1), where v_2(i) = A007814(i). - Ridouane Oudra, Oct 20 2019 EXAMPLE For n = 3, "11" in binary, the second least significant 1-bit (the second 1-bit from the right) is at position 1 and the rightmost 1-bit is at position 0), thus a(3) = 1-0 = 1. For n = 4, "100" in binary, there is just one 1-bit present, thus a(4) = 0. For n = 5, "101" in binary, the second 1-bit from the right is at position 2, and the least significant 1 is at position 0, thus a(5) = 2-0 = 2. For n = 26, "11010" in binary, the second 1-bit from the right is at position 3, and the least significant 1 is at position 1, thus a(26) = 3-1 = 2. MATHEMATICA a007814[n_]:=IntegerExponent[n, 2]; a285099[n_]:=If[DigitCount[n, 2, 1]<2, 0, a007814[BitAnd[n, n - 1]]]; a[n_]:=If[DigitCount[n, 2, 1]<2, 0, a285099[n] - a007814[n]]; Table[a[n], {n, 0, 150}] (* Indranil Ghosh, Apr 20 2017 *) PROG (Scheme) (define (A285097 n) (if (<= (A000120 n) 1) 0 (- (A285099 n) (A007814 n)))) (Python) import math def a007814(n): return int(math.log(n - (n & n - 1), 2)) def a285099(n): return 0 if bin(n)[2:].count("1") < 2 else a007814(n & (n - 1)) def a(n): return 0 if bin(n)[2:].count("1")<2 else a285099(n) - a007814(n) # Indranil Ghosh, Apr 20 2017 CROSSREFS Cf. A000120, A007814, A119387, A129760, A285099, A000265. Sequence in context: A171846 A097230 A144789 * A279209 A087117 A029340 Adjacent sequences: A285094 A285095 A285096 * A285098 A285099 A285100 KEYWORD nonn,base AUTHOR Antti Karttunen, Apr 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 10 12:17 EDT 2023. Contains 363205 sequences. (Running on oeis4.)