login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285046
Expansion of cosh(9*arctanh(2*sqrt(x))).
5
1, 162, 4806, 71892, 758214, 6506172, 48783900, 332715240, 2115552582, 12745645484, 73577414196, 410265444888, 2222886926364, 11756568121560, 60911288332920, 310024235290320, 1553692427724870
OFFSET
0,2
COMMENTS
Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
In A285043 through A285046 we consider sequences with o.g.f. cosh((2*n + 1)*arctanh(2*sqrt(x))) for n = 1, 2, 3 and 4: n = 0 gives the central binomial coefficients A000984.
FORMULA
a(n) = 1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n,n).
O.g.f. cosh(9*arctanh(2*sqrt(x))) = (1 + 144*x + 2016*x^2 + 5376*x^3 + 2304x^4)/(1 - 4*x)^(9/2) = 1 + 162*x + 4806*x^2 + 71892*x^3 + ....
Note that the zeros of the polynomial 1 + 144*x^2 + 2016*x^4 + 5376*x^6 + 2304*x^8 = 1/2*((1 + 2*x)^9 + (1 - 2*x)^9), are given by 1/2*cot(k*Pi/9)*i for 1 <= k <= 8. See A085840.
O.g.f. for the sequence with interpolated zeros: 1/2*( ((1 + 2*x)/(1 - 2*x))^(9/2) + ((1 - 2*x)/(1 + 2*x))^(9/2) ) = 1 + 162*x^2 + 4806*x^4 + 71892*x^6 + ....
MAPLE
seq(1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n, n), n = 0..20);
PROG
(PARI) x='x + O('x^30); print(Vec((1 + 144*x + 2016*x^2 + 5376*x^3 + 2304*x^4)/(1 - 4*x)^(9/2))) \\ Indranil Ghosh, Apr 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 10 2017
STATUS
approved