OFFSET
0,2
COMMENTS
Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
FORMULA
a(n) = 1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n,n).
O.g.f. cosh(9*arctanh(2*sqrt(x))) = (1 + 144*x + 2016*x^2 + 5376*x^3 + 2304x^4)/(1 - 4*x)^(9/2) = 1 + 162*x + 4806*x^2 + 71892*x^3 + ....
Note that the zeros of the polynomial 1 + 144*x^2 + 2016*x^4 + 5376*x^6 + 2304*x^8 = 1/2*((1 + 2*x)^9 + (1 - 2*x)^9), are given by 1/2*cot(k*Pi/9)*i for 1 <= k <= 8. See A085840.
O.g.f. for the sequence with interpolated zeros: 1/2*( ((1 + 2*x)/(1 - 2*x))^(9/2) + ((1 - 2*x)/(1 + 2*x))^(9/2) ) = 1 + 162*x^2 + 4806*x^4 + 71892*x^6 + ....
MAPLE
seq(1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n, n), n = 0..20);
PROG
(PARI) x='x + O('x^30); print(Vec((1 + 144*x + 2016*x^2 + 5376*x^3 + 2304*x^4)/(1 - 4*x)^(9/2))) \\ Indranil Ghosh, Apr 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 10 2017
STATUS
approved