login
A284794
Positions of -1 in A284793.
7
2, 6, 8, 10, 14, 18, 20, 24, 26, 30, 32, 34, 38, 42, 44, 46, 50, 54, 56, 60, 62, 64, 68, 72, 74, 78, 80, 82, 86, 90, 92, 96, 98, 102, 104, 106, 110, 114, 116, 118, 122, 126, 128, 132, 134, 138, 140, 142, 146, 150, 152, 154, 158, 162, 164, 168, 170, 172, 176
OFFSET
1,1
COMMENTS
This sequence and A284795 and A284796 form a partition of the positive integers. For n>=1, we have 3n-a(n) in {0,1,2}, 3*n+2-A284795(n) in {0,1,2,3}, and 3*n-2-A284796(n) in {0,1}.
A284793 = (1,-1,0,1,0,-1,1,-1,1,-1,0,1,0,-1,0,1,0,-1,1,-1,0,1,0,-1, ... ); thus
A284794 = (2,6,8,10,14,...)
A284795 = (3,5,11,13,15,...)
A284796 = (1,4,7,9,12,15,...).
LINKS
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 0, 1, 1}}] &, {0}, 7] (* A284775 *)
d = Differences[s] (* A284793 *)
e = Flatten[Position[d, -1]] (* A284794 *)
Flatten[Position[d, 0]] (* A284795 *)
Flatten[Position[d, 1]] (* A284796 *)
e/2 (* positions of 0 in A189664 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2017
STATUS
approved