login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284313 Expansion of Product_{k>=0} (1 - x^(4*k+1)) in powers of x. 5
1, -1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 2, -1, 0, -1, 2, -1, 0, -1, 3, -2, 0, -1, 3, -3, 1, -1, 4, -4, 1, -1, 4, -5, 2, -1, 5, -7, 3, -1, 5, -8, 5, -2, 6, -10, 6, -2, 6, -12, 9, -3, 7, -14, 11, -4, 7, -16, 15, -6, 8, -19, 18, -8, 9, -21, 23, -11, 10, -24 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,15

LINKS

Robert Israel, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = -(1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1.

O.g.f.: Sum_{n >= 0} (-1)^n*x^(n*(2*n-1)) / Product_{k = 1..n} ( 1 - x^(4*k) ). Cf. A284316. - Peter Bala, Nov 28 2020

MAPLE

V:= Vector(100):

V[1]:= 1:

for k from 0 to 24 do

  V[4*k+2..100]:= V[4*k+2..100] - V[1..99-4*k]

od:

convert(V, list); # Robert Israel, May 03 2017

MATHEMATICA

CoefficientList[Series[Product[1 - x^(4k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)

PROG

(PARI) Vec(prod(k=0, 100, 1 - x^(4*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

CROSSREFS

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), this sequence (m=4), A284314 (m=5).

Cf. A050449, A169975, A284316.

Sequence in context: A170973 A170974 A170975 * A169975 A168316 A305259

Adjacent sequences:  A284310 A284311 A284312 * A284314 A284315 A284316

KEYWORD

sign,easy

AUTHOR

Seiichi Manyama, Mar 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 12:24 EST 2021. Contains 349416 sequences. (Running on oeis4.)