login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170975 Expansion of Product_{i=0..m-1} (1 + x^(4*i+1)) for m = 12. 2
1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 1, 5, 12, 9, 2, 5, 13, 11, 3, 4, 14, 15, 5, 4, 15, 17, 7, 4, 15, 21, 10, 4, 15, 23, 13, 4, 15, 27, 17, 5, 14, 28, 21, 6, 13, 31, 26, 8, 12, 31, 30, 11, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,15

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 0..276 (full sequence)

FORMULA

a(n) = a(276-n). - Rick L. Shepherd, Mar 01 2013

MAPLE

seq(coeff(mul((1+x^(4*i+1)), i=0..11), x, n), n=0..100); # Nathaniel Johnston, Jun 24 2011

MATHEMATICA

With[{m=12}, CoefficientList[Series[Product[(1 + x^(4*j+1)), {j, 0, m-1}], {x, 0, 100}], x]] (* G. C. Greubel, Feb 24 2019 *)

PROG

(PARI) m=12; my(x='x+O('x^(100))); Vec(prod(j=0, m-1, 1+x^(4*j+1) )) \\ G. C. Greubel, Feb 24 2019

(MAGMA) m:=12; R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (&*[1+x^(4*j+1): j in [0..m-1]]) )); // G. C. Greubel, Feb 24 2019

(Sage) m=12; ( prod(1+x^(4*j+1) for j in (0..m-1)) ).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 24 2019

CROSSREFS

Cf. A169975, A170966-A170984.

Sequence in context: A170972 A170973 A170974 * A284313 A169975 A168316

Adjacent sequences:  A170972 A170973 A170974 * A170976 A170977 A170978

KEYWORD

nonn,fini,full,easy

AUTHOR

N. J. A. Sloane, Aug 29 2010

EXTENSIONS

Typo in Maple program fixed and b-file extended 9 terms by Rick L. Shepherd, Mar 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 16:06 EDT 2021. Contains 348033 sequences. (Running on oeis4.)