login
A284266
Odd bisection of A277700, binary weight of terms of A283975.
4
1, 2, 1, 3, 2, 3, 1, 4, 3, 3, 2, 3, 3, 4, 1, 5, 4, 3, 3, 2, 1, 3, 2, 3, 3, 4, 3, 3, 4, 5, 1, 6, 5, 3, 4, 3, 3, 2, 3, 3, 2, 3, 1, 4, 3, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 4, 3, 5, 4, 3, 5, 6, 1, 7, 6, 3, 5, 4, 3, 3, 4, 5, 3, 2, 3, 5, 2, 3, 3, 4, 3, 3, 2, 5, 3, 4, 1, 5, 2, 3, 3, 6, 3, 3, 2, 3, 3, 4, 3, 5, 2, 3, 3, 2, 1, 3, 2, 5, 3, 4, 3, 5, 4, 5, 3, 4, 3, 3, 4, 5, 3
OFFSET
0,2
FORMULA
a(n) = A277700((2*n)+1).
a(n) = A000120(A283975(n)).
Other identities. For all n >= 0:
A007306(1+n) = a(n) + 2*A284265(n).
MATHEMATICA
A264977[n_]:= If[n<2, n, If[EvenQ[n], 2 A264977[n/2], BitXor[A264977[(n - 1)/2], A264977[(n + 1)/2]]]]; Table[DigitCount[A264977[2n + 1], 2, 1], {n, 0, 150}] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(Scheme)
(define (A284266 n) (A277700 (+ n n 1)))
(define (A284266 n) (A000120 (A283975 n)))
(PARI) a(n) = if(n<2, n, if(n%2, bitxor(a((n - 1)/2), a((n + 1)/2)), 2*a(n/2)));
b(n) = if(n<1, 0, b(n\2) + n%2);
for(n=0, 150, print1(b(a(2*n + 1)), ", ")) \\ Indranil Ghosh, Mar 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 25 2017
STATUS
approved