The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283930 Numbers k such that tau(2^k - 1) = tau(2^k + 1). 1
 2, 11, 14, 21, 23, 29, 45, 47, 53, 71, 73, 74, 82, 86, 95, 99, 101, 105, 113, 115, 121, 142, 167, 169, 179, 181, 199, 203, 209, 233, 235, 277, 307, 311, 317, 335, 337, 343, 347, 349, 353, 355, 358, 361, 382, 434, 449, 465, 494, 509, 515, 518, 529, 535, 547, 549, 570, 583, 585, 599 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS tau(k) is the number of divisors of k (A000005). Numbers k such that A046801(k) = A046798(k). Numbers k such that A000005(A000225(k)) = A000005(A000051(k)). Corresponding values of tau(2^k +- 1): 2, 4, 8, 12, 4, 8, 64, 8, 8, 8, 8, 32, 32, 32, 32, 256, 4, 1536, ... Corresponding pairs of numbers (2^k - 1, 2^k + 1): (3, 5); (2047, 2049); (16383, 16385); (2097151, 2097153); (8388607, 8388609); ... LINKS EXAMPLE For n = 11; tau(2047) = tau(2049) = 4. MATHEMATICA Select[Range@ 200, Function[n, Equal @@ Map[DivisorSigma[0, 2^n + #] &, {-1, 1}]]] (* Michael De Vlieger, Mar 18 2017 *) PROG (MAGMA) [n: n in [1..500] | NumberOfDivisors(2^n - 1) eq NumberOfDivisors(2^n + 1)] (PARI) for(n=1, 600, if(numdiv(2^n - 1) == numdiv(2^n + 1), print1(n, ", "))) \\ Indranil Ghosh, Mar 18 2017 (Python) from sympy import divisor_count print([n for n in range(1, 601) if divisor_count(2**n + 1) == divisor_count(2**n - 1)]) # Indranil Ghosh, Mar 18 2017 CROSSREFS Cf. A000005, A000051, A000225, A046798, A046801, A283931. Sequence in context: A130288 A287395 A031192 * A034039 A077475 A168498 Adjacent sequences:  A283927 A283928 A283929 * A283931 A283932 A283933 KEYWORD nonn AUTHOR Jaroslav Krizek, Mar 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 07:28 EST 2021. Contains 349478 sequences. (Running on oeis4.)