login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283930 Numbers n such that tau(2^n - 1) = tau(2^n + 1). 1
2, 11, 14, 21, 23, 29, 45, 47, 53, 71, 73, 74, 82, 86, 95, 99, 101, 105, 113, 115, 121, 142, 167, 169, 179, 181, 199, 203, 209, 233, 235, 277, 307, 311, 317, 335, 337, 343, 347, 349, 353, 355, 358, 361, 382, 434, 449, 465, 494, 509, 515, 518, 529, 535, 547, 549, 570, 583, 585, 599 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

tau(n) is the number of divisors of n (A000005).

Numbers n such that A046801(n) = A046798(n).

Numbers n such that A000005(A000225(n)) = A000005(A000051(n)).

Corresponding values of tau(2^n +- 1): 2, 4, 8, 12, 4, 8, 64, 8, 8, 8, 8, 32, 32, 32, 32, 256, 4, 1536, ...

Corresponding pairs of numbers (2^n - 1, 2^n + 1): (3, 5); (2047, 2049); (16383, 16385); (2097151, 2097153); (8388607, 8388609); ...

LINKS

Table of n, a(n) for n=1..60.

EXAMPLE

For n = 11; tau(2047) = tau(2049) = 4.

MATHEMATICA

Select[Range@ 200, Function[n, Equal @@ Map[DivisorSigma[0, 2^n + #] &, {-1, 1}]]] (* Michael De Vlieger, Mar 18 2017 *)

PROG

(MAGMA) [n: n in [1..500] | NumberOfDivisors(2^n - 1) eq NumberOfDivisors(2^n + 1)]

(PARI) for(n=1, 600, if(numdiv(2^n - 1) == numdiv(2^n + 1), print1(n, ", "))) \\ Indranil Ghosh, Mar 18 2017

(Python)

from sympy import divisor_count

print [n for n in xrange(1, 601) if divisor_count(2**n + 1) == divisor_count(2**n - 1)] # Indranil Ghosh, Mar 18 2017

CROSSREFS

Cf. A000005, A000051, A000225, A046798, A046801, A283931.

Sequence in context: A130288 A287395 A031192 * A034039 A077475 A168498

Adjacent sequences:  A283927 A283928 A283929 * A283931 A283932 A283933

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Mar 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 02:06 EST 2018. Contains 299330 sequences. (Running on oeis4.)