|
|
A283928
|
|
Numbers k such that prime(k) divides primorial(j) + 1 for exactly three integers j.
|
|
5
|
|
|
436, 2753, 13396, 19960, 24293, 26157, 58492, 58723, 61935, 121992, 136592, 145803, 149027, 159752, 179811, 180776, 184575, 194499, 262321, 268645, 280911, 315198, 327876, 339951, 364307, 390394, 413010, 433626, 444744, 492661, 510412, 518156, 541925, 542177
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).
|
|
LINKS
|
|
|
EXAMPLE
|
436 is in this sequence because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j: 206, 263, and 409.
180707 is not in this sequence because prime(180707) = 2464853 divides primorial(j) + 1 for exactly five integers j: 75366, 79914, 139731, 139990, and 175013. - Jon E. Schoenfield, Mar 30 2017
|
|
PROG
|
(Magma) countReqd:=3; kMaxTest:=20000; P:=PrimesInInterval(2, NthPrime(kMaxTest)); itos:=IntegerToString; a:=[]; for k in [1..kMaxTest] do p:=P[k]; pMinus1:=p-1; primorialModp:=1; jSuccess:=[]; if primorialModp eq pMinus1 then jSuccess:=[1]; end if; for j in [1..k-1] do primorialModp:=(primorialModp*P[j]) mod p; if primorialModp eq pMinus1 then jSuccess[#jSuccess+1]:=j; end if; end for; if #jSuccess eq countReqd then a[#a+1]:=k; "a("*itos(#a)*") = " * itos(k) * "; successes at j =", jSuccess; end if; end for; a; // Jon E. Schoenfield, Mar 25 2017
|
|
CROSSREFS
|
Subsequence of A279097 (which includes all numbers k such that prime(k) divides primorial(j) + 1 for one or more integers j); cf. A279098 (exactly one integer j), A279099 (exactly two).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|