login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283922
Denominators of poly-Bernoulli numbers B_n^(k) with k=5.
2
1, 32, 7776, 41472, 194400000, 25920000, 653456160000, 49787136000, 25204737600000, 160030080000, 16913534146740000, 312400053504000, 319702820637227227200000, 788601079506240000, 1053965342760089760000, 187184432058624000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(5) = 1, B_1^(5) = 1/32, B_2^(5) = -179/7776, B_3^(5) = 515/41472, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-5), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-5));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283921.
Sequence in context: A028461 A240446 A221608 * A224100 A224107 A016829
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved