login
A283923
Numerators of poly-Bernoulli numbers B_n^(k) with k=6.
2
1, 1, -601, 4409, -42849721, -878249, 1363125719173, -129898224049, -297927535838903, 4572261241181, -525680140620492443, -301857269916983503, 4258363189724529911241659137, 6916875732289230327479, -57491970528985420156677059, -4871655423556947027887
OFFSET
0,3
LINKS
EXAMPLE
B_0^(6) = 1, B_1^(6) = 1/64, B_2^(6) = -601/46656, B_3^(6) = 4409/497664, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-6), {m, 0, n}]; Table[Numerator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-6));
for(n=0, 15, print1(numerator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283924.
Sequence in context: A078966 A255024 A362323 * A302559 A232073 A278206
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved