login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224107 Denominators of poly-Cauchy numbers of the second kind hat c_n^(5). 2
1, 32, 7776, 82944, 388800000, 155520000, 2613824640000, 11948912640000, 3629482214400000, 806551603200000, 77937565348177920000, 14170466426941440000, 92074412343521441433600000, 524640526173911347200000, 6070840374298117017600000, 12951126131835982970880000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)

Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.

Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.

T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.

Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016

MATHEMATICA

Table[Denominator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]

PROG

(PARI) a(n) = denominator(sum(k=0, n, (-1)^k*stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015

CROSSREFS

Cf. A002790, A223904, A219247, A224103, A224105, A224109 (numerators).

Sequence in context: A221608 A283922 A224100 * A016829 A248720 A069052

Adjacent sequences:  A224104 A224105 A224106 * A224108 A224109 A224110

KEYWORD

nonn,frac

AUTHOR

Takao Komatsu, Mar 31 2013

EXTENSIONS

More terms from Michel Marcus, Nov 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 22:01 EDT 2022. Contains 357063 sequences. (Running on oeis4.)