|
|
A283892
|
|
Relative of Hofstadter Q-sequence.
|
|
4
|
|
|
28, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 35, 10009, 10010, 10011, 10012, 10013, 10014, 10015, 42, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 49, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 56, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 63
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is defined by a(n) = max(0, n+10001) for n <= 0; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) + a(n-a(n-4)) + a(n-a(n-5)) + a(n-a(n-6)) + a(n-a(n-7)) for n > 0.
Sequences like this are more naturally considered with the first nonzero term in position 1. But this sequence would then match A000027 for its first 10001 terms.
This sequence has some stretches where it is quasilinear, but it appears to be ultimately chaotic.
|
|
LINKS
|
Nathan Fox, Table of n, a(n) for n = 1..50000
|
|
MAPLE
|
A283892:=proc(n) option remember: if n <= 0 then max(0, n+10001): else A283892(n-A283892(n-1)) + A283892(n-A283892(n-2)) + A283892(n-A283892(n-3)) + A283892(n-A283892(n-4)) + A283892(n-A283892(n-5)) + A283892(n-A283892(n-6)) + A283892(n-A283892(n-7)): fi: end:
|
|
CROSSREFS
|
Cf. A005185, A283889, A283890, A283891.
Sequence in context: A281128 A222018 A283891 * A281652 A221691 A159415
Adjacent sequences: A283889 A283890 A283891 * A283893 A283894 A283895
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Nathan Fox, Mar 19 2017
|
|
STATUS
|
approved
|
|
|
|