|
|
A283891
|
|
Relative of Hofstadter Q-sequence.
|
|
4
|
|
|
28, 10001, 10002, 10003, 10004, 10005, 10006, 10007, 35, 10008, 10009, 10010, 10011, 10012, 10013, 10014, 42, 10015, 10016, 10017, 10018, 10019, 10020, 10021, 49, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 56, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 63
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is defined by a(n) = max(0, n+10000) for n <= 0; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) + a(n-a(n-4)) + a(n-a(n-5)) + a(n-a(n-6)) + a(n-a(n-7)) for n > 0.
Sequences like this are more naturally considered with the first nonzero term in position 1. But this sequence would then match A000027 for its first 10000 terms.
This sequence has some stretches where it is quasilinear, but it appears to be ultimately chaotic.
|
|
LINKS
|
Nathan Fox, Table of n, a(n) for n = 1..50000
|
|
MAPLE
|
A283891:=proc(n) option remember: if n <= 0 then max(0, n+10000): else A283891(n-A283891(n-1)) + A283891(n-A283891(n-2)) + A283891(n-A283891(n-3)) + A283891(n-A283891(n-4)) + A283891(n-A283891(n-5)) + A283891(n-A283891(n-6)) + A283891(n-A283891(n-7)): fi: end:
|
|
CROSSREFS
|
Cf. A005185, A283889, A283890, A283892.
Sequence in context: A099058 A281128 A222018 * A283892 A281652 A221691
Adjacent sequences: A283888 A283889 A283890 * A283892 A283893 A283894
|
|
KEYWORD
|
nonn,look
|
|
AUTHOR
|
Nathan Fox, Mar 19 2017
|
|
STATUS
|
approved
|
|
|
|