login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283869
Primes p such that p+12, (p+1)/2, and (p+13)/2 are also prime.
2
61, 661, 1201, 4261, 5101, 6121, 6361, 12421, 12541, 12841, 13921, 15361, 17041, 18301, 19801, 21661, 26821, 31321, 36901, 47521, 54121, 55921, 56101, 71341, 80701, 83221, 87421, 91381, 101161, 107761, 109441, 126481, 128461, 129841, 131101, 135601, 146941, 151141, 151561
OFFSET
1,1
COMMENTS
Numbers k such that both k and k + 12 are terms of A005383.
All terms are of the form 60*m + 1 for m > 0 since A005383(i) == 1 (mod 12) for i > 2 and if A005383(i) + 12 is a term in A005383, then A005383(i) == 1 (mod 10).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) == 1 (mod 60).
EXAMPLE
61 is a term because 61 and 73 are both terms in A005383.
MATHEMATICA
Select[Range@ 160000, Mod[#, 60] == 1 && PrimeQ[#] && PrimeQ[# + 12] && PrimeQ[(# + 1)/2] && PrimeQ[(# + 13)/2] &] (* Indranil Ghosh, Mar 17 2017 *)
Select[Range[1, 152000, 60], AllTrue[{#, #+12, (#+1)/2, (#+13)/2}, PrimeQ]&] (* Harvey P. Dale, Oct 14 2021 *)
PROG
(PARI) is(n)=n%60==1 && isprime(n) && isprime(n+12) && isprime((n+1)/2) && isprime((n+13)/2) \\ Charles R Greathouse IV, Mar 17 2017
(Python)
from sympy import isprime
[i for i in range(1, 160001) if i%60 == 1 and isprime(i) and isprime(i + 12) and isprime((i + 1)/2) and isprime((i + 13)/2)] # Indranil Ghosh, Mar 17 2017
CROSSREFS
Cf. A005383.
Sequence in context: A068850 A142667 A317462 * A173805 A092571 A119597
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 17 2017, after Zak Seidov's comment in A005383
STATUS
approved