login
A283759
Numbers whose Euler totient function is equal to the product of the number of divisors of their k first powers, for some k.
2
3, 7, 8, 10, 18, 24, 30, 57, 74, 344, 399, 494, 518, 629, 654, 679, 1154, 2408, 2989, 3048, 3175, 3458, 3789, 4218, 4578, 4890, 5022, 7668, 10602, 13720, 14647, 14701, 14837, 15613, 16133, 17563, 17945, 18335, 19608, 20195, 20358, 21243, 21336, 21423, 22083, 22503
OFFSET
1,1
COMMENTS
Values of k: {1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, ...}. - Michael De Vlieger, Mar 17 2017
LINKS
EXAMPLE
phi(629) = 576 and d(629) * d(629^2) * d(629^3) = 4 * 9 * 16= 576;
phi(14647) = 14400 and d(14647) * d(14647^2) * d(14647^3) * d(14647^4) = 4 * 9 * 16 * 25 = 14400.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 1 to q do a:=1; k:=0; while a<phi(n) do k:=k+1; a:=a*tau(n^k); if phi(n)=a then print(n); break; fi; od; od; end: P(10^5);
MATHEMATICA
Select[Range[2, 25000], Module[{k = 1, e = EulerPhi@ #, b}, While[Set[b, Product[DivisorSigma[0, #^j], {j, k}]] < e, k++]; If[b == e, True, False]] &] (* Michael De Vlieger, Mar 17 2017 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Mar 16 2017
STATUS
approved