login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282764
9*n analog to Keith numbers.
2
9, 17, 48, 55, 96, 120, 124, 131, 244, 426, 787, 1893, 5307, 5364, 5600, 10083, 31085, 46733, 52700, 53456, 56857, 56920, 109620, 110313, 110376, 374016, 2989245, 4081505, 5173765, 13017112, 17242512, 34346372, 34638676
OFFSET
1,1
COMMENTS
Like Keith numbers but starting from 9*n digits to reach n.
Consider the digits of 9*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
EXAMPLE
9*17 = 153:
1 + 5 + 3 = 9;
5 + 3 + 9 = 17.
MAPLE
with(numtheory): P:=proc(q, h, w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000, 9);
MATHEMATICA
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[9 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Feb 22 2017
STATUS
approved