Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 23 2017 22:54:34
%S 9,17,48,55,96,120,124,131,244,426,787,1893,5307,5364,5600,10083,
%T 31085,46733,52700,53456,56857,56920,109620,110313,110376,374016,
%U 2989245,4081505,5173765,13017112,17242512,34346372,34638676
%N 9*n analog to Keith numbers.
%C Like Keith numbers but starting from 9*n digits to reach n.
%C Consider the digits of 9*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
%e 9*17 = 153:
%e 1 + 5 + 3 = 9;
%e 5 + 3 + 9 = 17.
%p with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
%p for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
%p for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
%p if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000,9);
%t Select[Range[10^6], Function[n, Module[{d = IntegerDigits[9 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* _Michael De Vlieger_, Feb 22 2017, after _T. D. Noe_ at A007629 *)
%Y Cf. A282757 - A282763, A282765.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Feb 22 2017