login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282766
n/2 analog of Keith numbers.
4
50, 642, 1284, 1926, 2292, 5088, 29828, 42922, 53046, 95968, 512050, 1043160, 1723714, 14819056, 154860206, 159251186, 752516578, 946218018, 54728972948
OFFSET
1,1
COMMENTS
Like Keith numbers but starting from n/2 digits to reach n.
Consider the digits of n/2. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
If it exists, a(20) > 10^12. - Lars Blomberg Mar 13 2017
EXAMPLE
642/2 = 321:
3 + 2 + 1 = 6;
2 + 1 + 6 = 9;
1 + 6 + 9 = 16;
6 + 9 + 16 = 31;
9 + 16 + 31 = 56;
16 + 31 + 56 = 103;
31 + 56 + 103 = 190;
56 + 103 + 190 = 349;
103 + 190 + 349 = 642.
MAPLE
with(numtheory): P:=proc(q, h, w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000, 1/2);
MATHEMATICA
With[{n = 2}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Feb 27 2017
EXTENSIONS
a(15)-a(19) from Lars Blomberg, Mar 13 2017
STATUS
approved