login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282355
Expansion of (Sum_{i>=1} x^prime(prime(i)))*(Sum_{j = p*q, p prime, q prime} x^j).
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 2, 0, 1, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 1, 0, 2, 3, 3, 3, 1, 2, 2, 4, 2, 1, 0, 3, 1, 3, 4, 1, 3, 4, 2, 4, 3, 2, 1, 2, 3, 4, 2, 3, 3, 0, 3, 5, 2, 4, 0, 1, 3, 2, 3, 4, 4, 3, 2, 5, 5, 3, 0, 5, 4, 6, 3, 3, 1, 3, 2, 3, 5, 3, 0, 4, 2, 3
OFFSET
0,10
COMMENTS
Number of ways of writing n as a sum of a prime with prime subscript (A006450) and a semiprime (A001358).
Every sufficiently large even number can be written as the sum of two primes, or a prime and a semiprime (Chen's theorem).
Conjecture: a(n) > 0 for all n > 527 (addition: only 18 positive integers cannot be represented as a sum of a prime number with prime subscript and a semiprime).
FORMULA
G.f.: (Sum_{i>=1} x^prime(prime(i)))*(Sum_{j = p*q, p prime, q prime} x^j).
EXAMPLE
a(9) = 2 because we have [6, 3] and [5, 4].
MATHEMATICA
nmax = 110; CoefficientList[Series[Sum[x^Prime[Prime[k]], {k, 1, nmax}] Sum[Floor[PrimeOmega[k]/2] Floor[2/PrimeOmega[k]] x^k, {k, 2, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 13 2017
STATUS
approved