|
|
A100949
|
|
Number of partitions of n into a prime and a semiprime.
|
|
12
|
|
|
0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 2, 5, 1, 2, 2, 3, 2, 4, 2, 3, 3, 5, 5, 4, 1, 2, 4, 5, 2, 4, 3, 5, 6, 4, 5, 6, 3, 4, 5, 6, 5, 4, 3, 4, 4, 8, 7, 6, 4, 3, 7, 8, 6, 4, 4, 3, 10, 7, 6, 7, 4, 6, 10, 7, 6, 5, 6, 4, 7, 8, 9, 7, 5, 6, 9, 8, 9, 4, 5, 7, 8, 9, 11, 8, 4, 4, 11, 12, 10, 6, 10, 7, 13, 9, 9, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
Marnell conjectures that a(n) > 0 for n > 10 after analyzing "many thousands of whole numbers". I find no exceptions below 100 million. - Charles R Greathouse IV, May 04 2010
|
|
REFERENCES
|
Geoffrey R. Marnell, "Ten Prime Conjectures", Journal of Recreational Mathematics 33:3 (2004-2005), pp. 193-196.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
A100951(n) <= A100950(n) <= a(n) <= min(A000720(n), A072000(n)).
a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A064911(n-i) + A010051(n-i) * A064911(i). - Wesley Ivan Hurt, May 02 2019
|
|
EXAMPLE
|
a(21) = #{7+2*7, 11+2*5, 17+2*2} = 3.
|
|
MATHEMATICA
|
Table[Count[Sort/@(PrimeOmega/@IntegerPartitions[n, {2}]), {1, 2}], {n, 110}] (* Harvey P. Dale, Mar 25 2018 *)
|
|
PROG
|
(PARI) list(lim)=my(p=primes(primepi(lim)), sp=select(n->bigomega(n)==2, vector(lim\1, i, i)), x=O('x^(lim\1+1))+'x); concat([0, 0, 0, 0, 0], Vec(sum(i=1, #p, x^p[i])*sum(i=1, #sp, x^sp[i]))) \\ Charles R Greathouse IV, Jun 14 2013
(Haskell)
a100949 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a001358_list
-- Reinhard Zumkeller, Jun 26 2013
|
|
CROSSREFS
|
Cf. A061358, A000040, A001358.
Cf. A010051.
Sequence in context: A171934 A303205 A082785 * A152164 A263112 A110493
Adjacent sequences: A100946 A100947 A100948 * A100950 A100951 A100952
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Reinhard Zumkeller, Nov 23 2004
|
|
STATUS
|
approved
|
|
|
|