login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100949 Number of partitions of n into a prime and a semiprime. 12
0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 2, 5, 1, 2, 2, 3, 2, 4, 2, 3, 3, 5, 5, 4, 1, 2, 4, 5, 2, 4, 3, 5, 6, 4, 5, 6, 3, 4, 5, 6, 5, 4, 3, 4, 4, 8, 7, 6, 4, 3, 7, 8, 6, 4, 4, 3, 10, 7, 6, 7, 4, 6, 10, 7, 6, 5, 6, 4, 7, 8, 9, 7, 5, 6, 9, 8, 9, 4, 5, 7, 8, 9, 11, 8, 4, 4, 11, 12, 10, 6, 10, 7, 13, 9, 9, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

Marnell conjectures that a(n) > 0 for n > 10 after analyzing "many thousands of whole numbers". I find no exceptions below 100 million. - Charles R Greathouse IV, May 04 2010

REFERENCES

Geoffrey R. Marnell, "Ten Prime Conjectures", Journal of Recreational Mathematics 33:3 (2004-2005), pp. 193-196.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

FORMULA

A100951(n) <= A100950(n) <= a(n) <= min(A000720(n), A072000(n)).

EXAMPLE

a(21) = #{7+2*7, 11+2*5, 17+2*2} = 3.

PROG

(PARI) list(lim)=my(p=primes(primepi(lim)), sp=select(n->bigomega(n)==2, vector(lim\1, i, i)), x=O('x^(lim\1+1))+'x); concat([0, 0, 0, 0, 0], Vec(sum(i=1, #p, x^p[i])*sum(i=1, #sp, x^sp[i]))) \\ Charles R Greathouse IV, Jun 14 2013

(Haskell)

a100949 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a001358_list

-- Reinhard Zumkeller, Jun 26 2013

CROSSREFS

Cf. A061358, A000040, A001358.

Cf. A010051.

Sequence in context: A221879 A171934 A082785 * A152164 A263112 A110493

Adjacent sequences:  A100946 A100947 A100948 * A100950 A100951 A100952

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Nov 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 18:31 EST 2018. Contains 299356 sequences. (Running on oeis4.)