login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100949
Number of partitions of n into a prime and a semiprime.
12
0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 2, 5, 1, 2, 2, 3, 2, 4, 2, 3, 3, 5, 5, 4, 1, 2, 4, 5, 2, 4, 3, 5, 6, 4, 5, 6, 3, 4, 5, 6, 5, 4, 3, 4, 4, 8, 7, 6, 4, 3, 7, 8, 6, 4, 4, 3, 10, 7, 6, 7, 4, 6, 10, 7, 6, 5, 6, 4, 7, 8, 9, 7, 5, 6, 9, 8, 9, 4, 5, 7, 8, 9, 11, 8, 4, 4, 11, 12, 10, 6, 10, 7, 13, 9, 9, 6
OFFSET
1,9
COMMENTS
Marnell conjectures that a(n) > 0 for n > 10 after analyzing "many thousands of whole numbers". I find no exceptions below 100 million. - Charles R Greathouse IV, May 04 2010
REFERENCES
Geoffrey R. Marnell, "Ten Prime Conjectures", Journal of Recreational Mathematics 33:3 (2004-2005), pp. 193-196.
FORMULA
A100951(n) <= A100950(n) <= a(n) <= min(A000720(n), A072000(n)).
a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A064911(n-i) + A010051(n-i) * A064911(i). - Wesley Ivan Hurt, May 02 2019
EXAMPLE
a(21) = #{7+2*7, 11+2*5, 17+2*2} = 3.
MATHEMATICA
Table[Count[Sort/@(PrimeOmega/@IntegerPartitions[n, {2}]), {1, 2}], {n, 110}] (* Harvey P. Dale, Mar 25 2018 *)
PROG
(PARI) list(lim)=my(p=primes(primepi(lim)), sp=select(n->bigomega(n)==2, vector(lim\1, i, i)), x=O('x^(lim\1+1))+'x); concat([0, 0, 0, 0, 0], Vec(sum(i=1, #p, x^p[i])*sum(i=1, #sp, x^sp[i]))) \\ Charles R Greathouse IV, Jun 14 2013
(Haskell)
a100949 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a001358_list
-- Reinhard Zumkeller, Jun 26 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 23 2004
STATUS
approved