login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282319
a(n) = (2097203 mod n)^2 + (2097203 mod n) + 41.
1
41, 43, 47, 53, 53, 71, 53, 53, 71, 53, 131, 173, 61, 53, 113, 53, 281, 71, 47, 53, 347, 131, 347, 173, 53, 347, 71, 53, 151, 593, 547, 421, 461, 281, 53, 593, 83, 503, 347, 53, 197, 347, 97, 1033, 593, 347, 313, 1301, 53, 53, 1097, 1933, 2203, 71
OFFSET
1,1
COMMENTS
This sequence gives 168 prime numbers for n=1 to 168 with 63 different primes. This formula is based on the lucky numbers of Euler.
EXAMPLE
For n = 23, a(23) = 17^2+17+41 = 347, and 347 is prime.
MATHEMATICA
Table[#^2 + # + 41 &@ Mod[2097203 , n], {n, 54}] (* Michael De Vlieger, Feb 12 2017 *)
f[n_]:=Module[{x=Mod[2097203, n]}, x^2+x+41]; Array[f, 60] (* Harvey P. Dale, Jul 28 2017 *)
PROG
(Python)
def formul(i):
return ((i*i+2097203)%i)*((i*i+2097203)%i)+((i*i+2097203)%i)+41
for i in range(1, 169):
n=formul(i)
print(n, end=", ")
(PARI) a(n)=subst(x^2+x+41, x, 2097203%n) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Sequence in context: A073921 A118124 A054057 * A257362 A330673 A296921
KEYWORD
easy,nonn
AUTHOR
Frederic Isenmann, Feb 11 2017
STATUS
approved