|
|
A282319
|
|
a(n) = (2097203 mod n)^2 + (2097203 mod n) + 41.
|
|
1
|
|
|
41, 43, 47, 53, 53, 71, 53, 53, 71, 53, 131, 173, 61, 53, 113, 53, 281, 71, 47, 53, 347, 131, 347, 173, 53, 347, 71, 53, 151, 593, 547, 421, 461, 281, 53, 593, 83, 503, 347, 53, 197, 347, 97, 1033, 593, 347, 313, 1301, 53, 53, 1097, 1933, 2203, 71
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence gives 168 prime numbers for n=1 to 168 with 63 different primes. This formula is based on the lucky numbers of Euler.
|
|
LINKS
|
Table of n, a(n) for n=1..54.
Frederic Isenmann, Table of n, a(n) for n=1..168.
|
|
EXAMPLE
|
For n = 23, a(23) = 17^2+17+41 = 347, and 347 is prime.
|
|
MATHEMATICA
|
Table[#^2 + # + 41 &@ Mod[2097203 , n], {n, 54}] (* Michael De Vlieger, Feb 12 2017 *)
f[n_]:=Module[{x=Mod[2097203, n]}, x^2+x+41]; Array[f, 60] (* Harvey P. Dale, Jul 28 2017 *)
|
|
PROG
|
(Python)
def formul(i):
return ((i*i+2097203)%i)*((i*i+2097203)%i)+((i*i+2097203)%i)+41
for i in range(1, 169):
n=formul(i)
print(n, end=", ")
(PARI) a(n)=subst(x^2+x+41, x, 2097203%n) \\ Charles R Greathouse IV, Feb 14 2017
|
|
CROSSREFS
|
Cf. A005846, A202018.
Sequence in context: A073921 A118124 A054057 * A257362 A330673 A296921
Adjacent sequences: A282316 A282317 A282318 * A282320 A282321 A282322
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Frederic Isenmann, Feb 11 2017
|
|
STATUS
|
approved
|
|
|
|