login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281920
9th-power analog of Keith numbers.
9
1, 54, 71, 81, 196, 424, 451, 2394, 9057, 51737, 52141, 104439, 227914, 228088, 1019555, 1096369, 1202713, 1687563, 1954556, 3332130, 3652731, 4177592, 31669012, 79937731, 81478913, 148341053, 168763202, 182573136, 342393476, 773367191, 1450679282, 2914657310, 3282344153
OFFSET
1,2
COMMENTS
Like Keith numbers but starting from n^9 digits to reach n.
Consider the digits of n^9. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.
EXAMPLE
196^9 = 426878854210636742656:
4 + 2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 = 100;
2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 + 100 = 196.
MAPLE
with(numtheory): P:=proc(q, h, w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);
od; if v[t]=n then print(n); fi; od; end: P(10^6, 10000, 9);
MATHEMATICA
(* function keithQ[ ] is defined in A007629 *)
a281920[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 9]&]]
a281920[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Feb 02 2017
EXTENSIONS
a(24) from Jinyuan Wang, Feb 02 2020
a(25)-a(33) from Giovanni Resta, Feb 03 2020
STATUS
approved