login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005129
Theta series of {E_6}* lattice.
(Formerly M5309)
2
1, 0, 54, 72, 0, 432, 270, 0, 918, 720, 0, 2160, 936, 0, 2700, 2160, 0, 5184, 2214, 0, 5616, 3600, 0, 9504, 4590, 0, 9180, 6552, 0, 15120, 5184, 0, 14742, 10800, 0, 21600, 9360, 0, 19548, 12240, 0, 30240, 13500, 0, 28080, 17712, 0, 39744, 14760, 0, 32454
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 127.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
Expansion of b(q)^3 + c(q)^3 / 3 in power of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q)^3 / eta(q^3))^3 + 9 * (eta(q^3)^3 / eta(q))^3 in powers of q.
EXAMPLE
G.f. = 1 + 54*x^2 + 72*x^3 + 432*x^5 + 270*x^6 + 918*x^8 + 720*x^9 + 2160*x^11 + ...
MATHEMATICA
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x+A]^3 / QPochhammer[x^3+A])^3 + 9*x*(QPochhammer[x^3+A]^3 / QPochhammer[x+A])^3, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from 1st PARI script *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3 + 9 q (QPochhammer[ q^3]^3 /QPochhammer[ q])^3 , {q, 0, n}]; ( Michael Somos, Dec 28 2015 )
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 + 9 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))}; /* Michael Somos, Feb 28 2012 */
(PARI) {a(n) = my(A, a1, p3); if( n<0, 0, A = x * O(x^n); a1 = sum( k=1, n, 6 * sumdiv(k, d, kronecker( d, 3)) * x^k, 1 + A); p3 = sum( k=1, n\3, -24 * sigma(k) * x^(3*k), 1 + A); polcoeff( (a1^3 + a1 * p3 - 4 * x * a1') / 2, n))}; /* Michael Somos, Feb 28 2012 */
(Magma) A := Basis( ModularForms( Gamma1(3), 3), 51); A[1]; /* Michael Somos, Dec 28 2015 */
CROSSREFS
Cf. A004007 (E_6).
Sequence in context: A335035 A350886 A281920 * A039532 A007244 A365262
KEYWORD
nonn,nice,easy
STATUS
approved