login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Curious identities based on the Armstrong number 407 = A005188(13).
5

%I #20 May 10 2018 17:03:18

%S 407,340067,334000667,333400006667,333340000066667,333334000000666667,

%T 333333400000006666667,333333340000000066666667,

%U 333333334000000000666666667,333333333400000000006666666667,333333333340000000000066666666667,333333333334000000000000666666666667

%N Curious identities based on the Armstrong number 407 = A005188(13).

%C See a comment in A093137.

%H Colin Barker, <a href="/A281859/b281859.txt">Table of n, a(n) for n = 1..333</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1111,-112110,1111000,-1000000).

%F From _Colin Barker_, Feb 08 2017: (Start)

%F G.f.: x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).

%F a(n) = (1 + 2^(1+n)*5^n + 2^(1+2*n)*25^n + 1000^n) / 3.

%F a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)

%e Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ...

%t Table[FromDigits@ Join[ReplacePart[ConstantArray[3, n], -1 -> 4], ConstantArray[0, n], ReplacePart[ConstantArray[6, n], -1 -> 7]], {n, 12}] (* _Michael De Vlieger_, Feb 08 2017 *)

%t LinearRecurrence[{1111,-112110,1111000,-1000000},{407,340067,334000667,333400006667},20] (* _Harvey P. Dale_, May 10 2018 *)

%o (PARI) Vec(x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ _Colin Barker_, Feb 08 2017

%K nonn,easy

%O 1,1

%A _Wolfdieter Lang_, Feb 08 2017