login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281859
Curious identities based on the Armstrong number 407 = A005188(13).
5
407, 340067, 334000667, 333400006667, 333340000066667, 333334000000666667, 333333400000006666667, 333333340000000066666667, 333333334000000000666666667, 333333333400000000006666666667, 333333333340000000000066666666667, 333333333334000000000000666666666667
OFFSET
1,1
COMMENTS
See a comment in A093137.
LINKS
FORMULA
From Colin Barker, Feb 08 2017: (Start)
G.f.: x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (1 + 2^(1+n)*5^n + 2^(1+2*n)*25^n + 1000^n) / 3.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)
EXAMPLE
Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ...
MATHEMATICA
Table[FromDigits@ Join[ReplacePart[ConstantArray[3, n], -1 -> 4], ConstantArray[0, n], ReplacePart[ConstantArray[6, n], -1 -> 7]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
LinearRecurrence[{1111, -112110, 1111000, -1000000}, {407, 340067, 334000667, 333400006667}, 20] (* Harvey P. Dale, May 10 2018 *)
PROG
(PARI) Vec(x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017
CROSSREFS
Sequence in context: A213606 A343157 A063145 * A067674 A157263 A234702
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 08 2017
STATUS
approved